人工智能(AI)已被广泛应用于药物发现中,其主要任务是分子财产预测。尽管分子表示学习中AI技术的繁荣,但尚未仔细检查分子性质预测的一些关键方面。在这项研究中,我们对三个代表性模型,即随机森林,莫尔伯特和格罗弗进行了系统比较,该模型分别利用了三个主要的分子表示,扩展连接的指纹,微笑的字符串和分子图。值得注意的是,莫尔伯特(Molbert)和格罗弗(Grover)以自我监督的方式在大规模的无标记分子库中进行了预定。除了常用的分子基准数据集外,我们还组装了一套与阿片类药物相关的数据集进行下游预测评估。我们首先对标签分布和结构分析进行了数据集分析;我们还检查了阿片类药物相关数据集中的活动悬崖问题。然后,我们培训了4,320个预测模型,并评估了学习表示的有用性。此外,我们通过研究统计测试,评估指标和任务设置的效果来探索模型评估。最后,我们将化学空间的概括分解为施加间和支柱内的概括,并测量了预测性能,以评估两种设置下模型的普遍性。通过采取这种喘息,我们反映了分子财产预测的基本关键方面,希望在该领域带来更好的AI技术的意识。
translated by 谷歌翻译
视觉变压器在众多计算机视觉任务上表现出了巨大的成功。然而,由于计算复杂性和记忆足迹是二次的,因此其中心分量(软磁性注意力)禁止视觉变压器扩展到高分辨率图像。尽管在自然语言处理(NLP)任务中引入了线性注意以减轻类似问题,但直接将现有的线性注意力应用于视觉变压器可能不会导致令人满意的结果。我们研究了这个问题,发现与NLP任务相比,计算机视觉任务更多地关注本地信息。基于这一观察结果,我们提出了附近的关注,该关注引入了具有线性复杂性的视觉变压器的局部性偏见。具体而言,对于每个图像补丁,我们根据其相邻贴片测量的2D曼哈顿距离调整了注意力重量。在这种情况下,相邻的补丁比遥远的补丁会受到更大的关注。此外,由于我们的附近注意力要求令牌长度比特征维度大得多,以显示其效率优势,因此我们进一步提出了一个新的附近视觉变压器(VVT)结构,以减少特征维度而不脱离准确性。我们在CIFAR100,ImagEnet1k和ADE20K数据集上进行了广泛的实验,以验证我们方法的有效性。当输入分辨率增加时,与以前的基于变压器和基于卷积的网络相比,GFLOP的增长率较慢。特别是,我们的方法达到了最新的图像分类精度,其参数比以前的方法少50%。
translated by 谷歌翻译
人工智能(AI)在过去十年中一直在改变药物发现的实践。各种AI技术已在广泛的应用中使用,例如虚拟筛选和药物设计。在本调查中,我们首先概述了药物发现,并讨论了相关的应用,可以减少到两个主要任务,即分子性质预测和分子产生。然后,我们讨论常见的数据资源,分子表示和基准平台。此外,为了总结AI在药物发现中的进展情况,我们介绍了在调查的论文中包括模型架构和学习范式的相关AI技术。我们预计本调查将作为有兴趣在人工智能和药物发现界面工作的研究人员的指南。我们还提供了GitHub存储库(HTTPS:///github.com/dengjianyuan/survey_survey_au_drug_discovery),其中包含文件和代码,如适用,作为定期更新的学习资源。
translated by 谷歌翻译
Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.
translated by 谷歌翻译
Masked image modeling (MIM) has shown great promise for self-supervised learning (SSL) yet been criticized for learning inefficiency. We believe the insufficient utilization of training signals should be responsible. To alleviate this issue, we introduce a conceptually simple yet learning-efficient MIM training scheme, termed Disjoint Masking with Joint Distillation (DMJD). For disjoint masking (DM), we sequentially sample multiple masked views per image in a mini-batch with the disjoint regulation to raise the usage of tokens for reconstruction in each image while keeping the masking rate of each view. For joint distillation (JD), we adopt a dual branch architecture to respectively predict invisible (masked) and visible (unmasked) tokens with superior learning targets. Rooting in orthogonal perspectives for training efficiency improvement, DM and JD cooperatively accelerate the training convergence yet not sacrificing the model generalization ability. Concretely, DM can train ViT with half of the effective training epochs (3.7 times less time-consuming) to report competitive performance. With JD, our DMJD clearly improves the linear probing classification accuracy over ConvMAE by 5.8%. On fine-grained downstream tasks like semantic segmentation, object detection, etc., our DMJD also presents superior generalization compared with state-of-the-art SSL methods. The code and model will be made public at https://github.com/mx-mark/DMJD.
translated by 谷歌翻译
Recently, great progress has been made in single-image super-resolution (SISR) based on deep learning technology. However, the existing methods usually require a large computational cost. Meanwhile, the activation function will cause some features of the intermediate layer to be lost. Therefore, it is a challenge to make the model lightweight while reducing the impact of intermediate feature loss on the reconstruction quality. In this paper, we propose a Feature Interaction Weighted Hybrid Network (FIWHN) to alleviate the above problem. Specifically, FIWHN consists of a series of novel Wide-residual Distillation Interaction Blocks (WDIB) as the backbone, where every third WDIBs form a Feature shuffle Weighted Group (FSWG) by mutual information mixing and fusion. In addition, to mitigate the adverse effects of intermediate feature loss on the reconstruction results, we introduced a well-designed Wide Convolutional Residual Weighting (WCRW) and Wide Identical Residual Weighting (WIRW) units in WDIB, and effectively cross-fused features of different finenesses through a Wide-residual Distillation Connection (WRDC) framework and a Self-Calibrating Fusion (SCF) unit. Finally, to complement the global features lacking in the CNN model, we introduced the Transformer into our model and explored a new way of combining the CNN and Transformer. Extensive quantitative and qualitative experiments on low-level and high-level tasks show that our proposed FIWHN can achieve a good balance between performance and efficiency, and is more conducive to downstream tasks to solve problems in low-pixel scenarios.
translated by 谷歌翻译
Rigorous guarantees about the performance of predictive algorithms are necessary in order to ensure their responsible use. Previous work has largely focused on bounding the expected loss of a predictor, but this is not sufficient in many risk-sensitive applications where the distribution of errors is important. In this work, we propose a flexible framework to produce a family of bounds on quantiles of the loss distribution incurred by a predictor. Our method takes advantage of the order statistics of the observed loss values rather than relying on the sample mean alone. We show that a quantile is an informative way of quantifying predictive performance, and that our framework applies to a variety of quantile-based metrics, each targeting important subsets of the data distribution. We analyze the theoretical properties of our proposed method and demonstrate its ability to rigorously control loss quantiles on several real-world datasets.
translated by 谷歌翻译
Recently, large-scale pre-trained models have shown their advantages in many tasks. However, due to the huge computational complexity and storage requirements, it is challenging to apply the large-scale model to real scenes. A common solution is knowledge distillation which regards the large-scale model as a teacher model and helps to train a small student model to obtain a competitive performance. Cross-task Knowledge distillation expands the application scenarios of the large-scale pre-trained model. Existing knowledge distillation works focus on directly mimicking the final prediction or the intermediate layers of the teacher model, which represent the global-level characteristics and are task-specific. To alleviate the constraint of different label spaces, capturing invariant intrinsic local object characteristics (such as the shape characteristics of the leg and tail of the cattle and horse) plays a key role. Considering the complexity and variability of real scene tasks, we propose a Prototype-guided Cross-task Knowledge Distillation (ProC-KD) approach to transfer the intrinsic local-level object knowledge of a large-scale teacher network to various task scenarios. First, to better transfer the generalized knowledge in the teacher model in cross-task scenarios, we propose a prototype learning module to learn from the essential feature representation of objects in the teacher model. Secondly, for diverse downstream tasks, we propose a task-adaptive feature augmentation module to enhance the features of the student model with the learned generalization prototype features and guide the training of the student model to improve its generalization ability. The experimental results on various visual tasks demonstrate the effectiveness of our approach for large-scale model cross-task knowledge distillation scenes.
translated by 谷歌翻译
Crowd counting plays an important role in risk perception and early warning, traffic control and scene statistical analysis. The challenges of crowd counting in highly dense and complex scenes lie in the mutual occlusion of the human body parts, the large variation of the body scales and the complexity of imaging conditions. Deep learning based head detection is a promising method for crowd counting. However the highly concerned object detection networks cannot be well applied to this field for two main reasons. First, most of the existing head detection datasets are only annotated with the center points instead of bounding boxes which is mandatory for the canonical detectors. Second, the sample imbalance has not been overcome yet in highly dense and complex scenes because the existing loss functions calculate the positive loss at a single key point or in the entire target area with the same weight. To address these problems, We propose a novel loss function, called Mask Focal Loss, to unify the loss functions based on heatmap ground truth (GT) and binary feature map GT. Mask Focal Loss redefines the weight of the loss contributions according to the situ value of the heatmap with a Gaussian kernel. For better evaluation and comparison, a new synthetic dataset GTA\_Head is made public, including 35 sequences, 5096 images and 1732043 head labels with bounding boxes. Experimental results show the overwhelming performance and demonstrate that our proposed Mask Focal Loss is applicable to all of the canonical detectors and to various datasets with different GT. This provides a strong basis for surpassing the crowd counting methods based on density estimation.
translated by 谷歌翻译
Market sentiment analysis on social media content requires knowledge of both financial markets and social media jargon, which makes it a challenging task for human raters. The resulting lack of high-quality labeled data stands in the way of conventional supervised learning methods. Instead, we approach this problem using semi-supervised learning with a large language model (LLM). Our pipeline generates weak financial sentiment labels for Reddit posts with an LLM and then uses that data to train a small model that can be served in production. We find that prompting the LLM to produce Chain-of-Thought summaries and forcing it through several reasoning paths helps generate more stable and accurate labels, while using a regression loss further improves distillation quality. With only a handful of prompts, the final model performs on par with existing supervised models. Though production applications of our model are limited by ethical considerations, the model's competitive performance points to the great potential of using LLMs for tasks that otherwise require skill-intensive annotation.
translated by 谷歌翻译